Group Name		_
Students		
		
	H = blue bead; I = gr	een bead

Part 1

1. Write K expression for the reaction $H_2 + I_2 \rightleftharpoons 2HI$

2. Put the information for your K tray in the table

Tray #	How many H ₂ ?	How many I2?	How many HI?	K = ?

- 3. Calculate K based on the expression in Question 1. Show your work.
- 4. Groups will share data with the class. Copy the data collected into the table below for different tray numbers.

Tray #	How many H ₂ ?	How many I ₂ ?	How many HI?	K = ?

H = blue bead; I = green bead

- 5. What do you notice about the K values for each tray?
- 6. Did every tray have the same number of each type of molecule?
- 7. Can the amounts of reactants and products be different and the system still be at equilibrium?

Part 2

Now, we will look at systems that are <u>not</u> at equilibrium.

 \mathbf{Q} is for \mathbf{Q} uestioning if you're at equilibrium

 $\underline{\mathbf{K}}$ is when you $\underline{\mathbf{Know}}$ you're at equilibrium

Both values are calculated using the same mathematical equation; we just call them different things!

8. With your Q tray, count the number of each molecule present and record in table.

	How many H ₂ ?	How many I2?	How many HI?
Q			

- 9. Write the equation used to calculate Q.
- 10. Calculate Q for your Q tray. Same equation as K (Question 1) but we know we aren't at equilibrium, so we call it Q. Show your work.

If your calculation has you divide by zero, treat it as a very large number (>1000).

11. Compare the values of Q (from Question 10) and K (from Question 2). Circle one.

Q < K

$$Q = K$$

H = blue bead; I = green bead

- 12. With your Q tray
 - a. copy the values from Question 8 in the first row.
 - b. record the changes you make so that the Q tray looks like your K tray (i.e. $\pm 2, -1, 0$).
 - c. record the final count of each species in the row labeled K. It should match the values from Question 2.

	How many H ₂ ?	How many I ₂ ?	How many HI?
Q			
Change			
K			

13	To make out Q tray look like the contents of the I	C tray	, we had	to(describe	what	you d	id in
	words such as "break" and "make".)						

- 14. For every H₂ particle that changed, I₂ particle(s) is(are) changed.
- 15. For every H₂ particle that changed, _____ HI particle(s) is(are) changed.
- 16. Groups will share data with the class. Compare your data to a group with a different answer to question 11. What do you notice?

Before you leave, rearrange the Q tray so it is back to the original configuration shown in Question 8.

- 17. Based on what you saw with data from your group and other groups, complete the following statements.
 - a. When $Q \le K$,
 - b. When Q > K,
 - c. When Q = K,